1/1 Datenblatt // EISEN

Marke	EISEN					
Werkstoff	1.000					
Kurzzeichen	JP (X) / LP (X) / KPCA					
Chemische Zusammensetzung (Massenanteile) in % Mittelwerte der Legierungselemente						
Fe Rest	Mn	Si	AI	С		

Merkmale und Anwendungshinweise

EISEN wird als positiver Schenkel der Thermoelementtypen J und L eingesetzt. In der Version für Thermoleitungen wird EISEN für JPX und LPX verwendet. Als Ausgleichsleitung kommt EISEN als positiver Schenkel für KCA zum Einsatz. Die Thermospannungen für LP(X) und KPCA unterscheiden sich normabhängig von JP(X)-Materialien. Den genormten Temperaturbereich der verschiedenen Einsatzmöglichkeiten von EISEN entnehmen Sie bitte den Tabellen in der Begriffserklärung. Siehe auch "Besondere Hinweise zur Legierung". Das von der Isabellenhütte vertriebene EISEN wird frei von Rost, in verkupferter Qualität geliefert. Alle Verpackungseinheiten werden mit Rostinhibitoren geschützt.

Lieferart

EISEN wird in Form von Drähten im Abmessungsbereich von 0,12 bis 4,75 mm Ø in verkupferter Ausführung geliefert. Lackierte Drähte liefern wir von 0,12 bis 1,50 mm Ø. Ebenso kann EISEN in Form von Litzen, Bändern, Flachdrähten oder Stäben geliefert werden. Abmessungsbereiche können bei uns erfragt werden.

Thermoelektrische¹⁾ und elektrische Werte in weichgeglühtem Zustand

1,006	1,779	9,079	12
Thermospannung	Thermospannung	Thermospannung	Spez. Widerstand $\mu\Omega$ x cm bei +20 °C
gegen Cu/NIST 175	gegen Pt67/NIST 175	gegen Pt67/NIST 175	
bei +100°C / mV	bei +100 °C / mV	bei +700 °C / mV	

Physikalische Eigenschaften (Richtwerte)

Dichte bei +20 °C	Schmelz-	Spezifische	Wärmeleitfähig-	Mittlerer linearer Wärmeausdehnungs-	Magnetisch bei
	temperatur	Wärme bei +20 °C	keit bei +20 °C	koeffizient zwischen +20 °C und +100 °C	Raumtemperatur
g/cm³	°C	J/g K	W/m K	10 ⁻⁶ /K	
7,874	+1.496	0,47	81	11,20 bis 12,60*	ja

Mechanische Werte bei +20 °C in verschiedenen Zuständen (Richtwerte)²⁾

	Zugfestigkeit N/mm²	Dehnung %	Härte HV10
hart	> 600	0 – 1	200
weich	370	28	90

Verarbeitungshinweise // EISEN lässt sich leicht verarbeiten. Die Legierung kann ohne Schwierigkeiten weich- und hartgelötet werden; alle bekannten Schweißverfahren sind anwendbar.

Besondere Hinweise zur Legierung // EISEN neigt stark zu Korrosion/Rost. Bei Lagerung und Einsatz des Materials ist auf eine möglichst trockene Atmosphäre zu achten.

¹⁾ Die genauen Thermospannungen können mit Hilfe einer EMF-Berechnungssoftware auf unserer Homepage berechnet werden.

²⁾ Die mechanischen Werte sind stark abmessungsabhängig. Die hier angegebenen Werte beziehen sich auf Draht mit 1,0 mm Durchmesser.

^{*} in Abhängigkeit von der chemischen Zusammensetzung.