| Brand
Name | NOVIST | THERM | | ' | | |------------------|---------------------------------|---------|-----------|---|--| | Material
Code | | | | · | | | Abbreviation | CuMnN | i 25-10 | | ' | | | | nposition (ma
es of alloy co | | ts) in %. | · | | | Cu | Mn | Ni | | | | | Rest | 25 | 10 | | | | ## **Features and Application Notes** NOVISTHERM is especially characterized by a high resistivity. With its high specific electrical resistance, NOVISTHERM closes the gap between Cu- and Ni-based heating conductor alloys. NOVISTHERM is non-magnetic and possesses a low temperature coefficient and EMF values. The alloy shows better welding properties and workability than Ni-alloys. NOVISTHERM is suitable for heating wires of any application, also for heating cords and cables. The alloy is well known for heating elements with low conductor temperatures up to 400 °C in non-oxidizing atmosphere. Many applications can be found in the plastic sealing and cabling industry, where high-prized Ni-based alloys can be replaced. Due to its low melting point, NOVISTHERM is also proved successfully in powder metallurgical manufacturing processes. ### Form of Delivery NOVISTHERM is supplied in the form of round wires in the range 0.10 to 5.00 mm \emptyset in bare or enamelled condition. The product line includes sheets, ribbons, flat wires, stranded wires and rods. #### **Electrical Resistance in Annealed Condition** | | 540 | 541 | 535 | 541 | 449 | |---|--|--------------------------|---------------------------|---------|---------| | ±10 | 90 | 90 | 89 | 90 | 95 | | +20 °C and +50 °C
10 ⁻⁶ /K | +20 °C
tolerance ±5 % | +100 °C | +200 °C | +300 °C | +400 °C | | Temperature coefficient of the electrical resistance at | Electrical resistivity
Reference Values | in: μΩ x cm (first line) | and Ω /CMF (second | line) | | # **Physical Characteristics (Reference Values)** | Density at - | | Melting point | Specific heat
at +20 °C | Thermal conducti-
vity at +20 °C | Average linear thermal expansion coefficient between +20 °C and | Thermal EMF
against copper at | |--------------|-----------|---------------|----------------------------|-------------------------------------|---|----------------------------------| | | | ••••• | | | +100 °C | +20 °C | | g/cm³ | lb/cub in | °C | J/g K | W/m K | 10 ⁻⁶ /K | μV/K | | 8.1 | 0.291 | +940 | 0.47 | 12.5 | 18.5 | ± 0.5 | ## Strength Properties at +20 °C in Annealed Condition | MPa psi > 0.063 to 0.125 > 0.125 to 0.50 > 0.50 to 1.00 | | |---|--| | | | | Tensile Strength ¹⁾ Elongation (L ₀ = 100 mm) % at nominal diameter in mm | | ¹⁾ This value applies to wires of 1.0 mm diameter. For thinner wires the minimum values will substantially increase, depending on the dimensions.