Brand Name	A-COPP	ER 11				
Material Code						
Abbreviation	SNCA / SNCB / RNCA / RNCB					
	mposition (mas es of alloy co		s) in %.			
Cu Balance	Ni 3	Mn 2				

Features and Application Notes

A-COPPER 11 is used as negative leg for the compensating lead for thermocouple types Pt10Rh-Pt and Pt13Rh-Pt. A-COPPER 11 is standardized in the temperature range between 0 and +200 $^{\circ}$ C.

Form of Delivery

A-COPPER 11 is supplied in the form of wires with dimensions from 0.05 to 13.50 mm \emptyset in bare condition. Enamelled wires are available in dimensions between 0.05 and 1.50 mm \emptyset . A-COPPER 11 can also be supplied in form of stranded wire, ribbon, flat wire and rods. Please contact us for the range of dimensions.

Thermoelectrical¹⁾ and Electrical Values in Soft-Annealed Condition

EMF	EMF	EMF	EMF	Electrical resistivity in $\mu\Omega$ x cm at +20 °C
versus Cu/NIST 175	versus Pt67/NIST 175	versus Cu	versus Pt67/NIST 175	
at +100 °C / mV ³⁾	at +100 °C / mV ³⁾	at +200 °C / mV ³⁾	at +200 °C / mV ³⁾	
-0.646 / -0.647	0.127 / 0.126	-1.441 / -1.469	0.396 / 0.368	12.000
SC/RC	SC/RC	SC/RC	SC/RC	

Physical Characteristics (Reference Values)

Density at +20 °C	Melting point	Specific heat at +20 °C	Thermal conducti- vity at +20 °C	Average linear thermal expansion coefficient between +20 °C and +100 °C	Magnetic at room temperature
g/cm³	°C	J/g K	W/m K	10 ⁻⁶ /K	
8.90	+1,080	0.38	≈100	18	no

Mechanical Properties at +20 °C in Annealed Condition³⁾

	Tensile strength	Elongation	Hardness
	MPa	%	HV10
hard	> 500	2	> 170
soft	320	33	90

Notes on Treatment // A-COPPER 11 is easy to process. Copper-nickel alloys can be soft and hard soldered as well as welded by the known processes. On request we supply material tested according to DIN EN 60068-2-20.

¹⁾ The exact EMF values can be calculated with a "EMF-Software", which can be downloaded from our homepage.

²⁾ Reference at 0 °C.

³⁾ The mechanical values considerably depend on dimension. The indicated values refer to a dimension of 1.0 mm diameter.