Brand Name	E-COPPER			
Material Code	2.0060			
Abbreviation	TP (X) / UP (X) / KPCB / NPC / SPCA / SPCB / RPCA / RPCB / BNC			
	nposition (mass components) in %. es of alloy components			

Features and Application Notes

E-COPPER is used in a wide range of thermocouple, extension and compensating lead types. As a thermocouple, it is used as positive leg for types T and U. As an extension lead, it is used for types TPX and UPX. E-COPPER is also used as the positive leg for the compensating lead to the elements Pt10Rh-Pt, Pt13Rh-Pt, NiCr-Ni (KCB) and NICROSIL-NISIL (NC), as well as the negative leg for compensating lead to the element Pt30Rh-Pt6Rh. The standardized temperature range of the different application possibilities of E-COPPER is available in the tables of the glossary. We supply E-COPPER for applications up to +400 °C. Above this temperature strong oxidation of the metal will start. E-COPPER is standardized up to +200 °C for extension or compensating lead.

Form of Delivery

E-COPPER is supplied in the form of wires with dimensions from 0.05 to 10.00 mm \emptyset in bare condition. Enamelled wires are available in dimensions between 0.05 and 1.50 mm \emptyset . E-COPPER can also be supplied in form of stranded wire, ribbon, flat wire and rods. Please contact us for the range of dimensions.

Thermoelectrical¹⁾ and Electrical Values in Soft-Annealed Condition

EMF	EMF	EMF	EMF	Electrical resistivity in $\mu\Omega$ x cm at +20 °C
versus Cu/NIST 175	versus Pt67/NIST 175	versus Cu	versus Pt67/NIST 175	
at +100 °C / mV ²⁾	at +100 °C / mV ²⁾	at +400 °C / mV ²⁾	at +400 °C / mV ²⁾	
0.000	0.773	0.000	-4.690	1.700

Physical Characteristics (Reference Values)

Density at +20 °C	Melting point	Specific heat at +20 °C	Thermal conducti- vity at +20 °C	Average linear thermal expansion coefficient between +20 °C and +100 °C	Magnetic at room temperature
g/cm³	°C	J/g K	W/m K	10 ⁻⁶ /K	
8.90	+1,083	0.38	390.00	17.00	no

Mechanical Properties at +20 °C in Annealed Condition³⁾

	Tensile strength MPa	Elongation %	Hardness HV10
hard	400	3	120
soft	200	30	55

Notes on Treatment // E-COPPER is easy to process. The alloy can be soldered and brazed without difficulty. All known welding methods are applicable.