1/1 Data sheets // NISIL

Brand	NISIL				
Name Material					
Code	BIBI (34)				
Abbreviation	NN (X)				
Chemical Composition (mass components) in %. Average values of alloy components					
Ni Balance	Si 4.8				

Features and Application Notes

NISIL is used as negative leg of the thermocouple type N. In the version for extension leads NISIL is used for type NNX. The standardized temperature range of the different application possibilities of NISIL is available in the tables of the glossary.

Form of Delivery

NISIL (NN und NNX) is supplied in the form of bare wire with dimensions from 0.10 to 6.00 mm \emptyset . We supply coated wires from 0.10 to 1.50 mm \emptyset . Nisil can also be supplied in the form of stranded wire, ribbon, flat wire and rods. Please contact us for the range of dimensions.

Thermoelectrical¹⁾ and Electrical Values in Soft-Annealed Condition

EMF	EMF	EMF	Electrical resistivity in $\mu\Omega$ x cm at +20 °C
versus Cu/NIST 175	versus Pt67/NIST 175	versus Pt67/NIST 175	
at +100 °C / mV ²⁾	at +100 °C / mV ²⁾	at +1,000 °C / mV ²	
-1.763	-0.990	-10.210	36

Physical Characteristics (Reference Values)

Density at +20 °C	Melting point	Specific heat at +20 °C	Thermal conducti- vity at +20 °C	Average linear thermal expansion coefficient between +20 °C and +100 °C	Magnetic at room temperature
g/cm³	°C	J/g K	W/m K	10 ⁻⁶ /K	
8.55	+1,341	0.50	23	12.70	slight

Mechanical Properties at +20 °C in Annealed Condition3)

	Tensile strength MPa	Elongation %	Hardness HV10
hard	> 1.200	< 2	450
soft	650	30	130

Notes on Treatment // NISIL can be brazed without difficulty. All known welding methods are applicable. However, the alloy is difficult to soft-solder. See also "Special Remarks on the Alloy".

Special Remarks on the Alloy// NISIL has been developed as a counterleg to Nicrosil. By increasing the silicon and reducing the aluminium concentration versus the negative leg of thermocouple type K (KN), a higher oxidation stability has been achieved. Consequently, compared to KN the corrosive reaction to sulphur will be lower at higher working temperatures.

¹⁾ The exact EMF values can be calculated with a "EMF-Software", which can be downloaded from our homepage.

²⁾ Reference at 0 °C.

³⁾ The mechanical values considerably depend on dimension. The indicated values refer to a dimension of 1.0 mm diameter.