Brand Name	CENTA	NIN® 1)					
Material Code							
Abbreviation CuMn27Ni							
Chemical Composition (mass components) in %. Average values of alloy components							
Cu 67	Ni 5	Mn 27	AI				

Features and Application Notes

CENTANIN® is in the best tradition of Isabellenhütte's precision resistance alloys ZERANIN® 30, MANGANIN®, NOVENTIN® and ISAOHM®. CENTANIN® is especially characterized by a high resistivity and a low temperature coefficient of resistance between $+20^{\circ}\text{C}$ and $+60~^{\circ}\text{C}$ with a parabolic behavior of the R(T) curve. CENTANIN® is excellently suitable for the production of standard resistors with a maximum working temperature in air of $+140~^{\circ}\text{C}$. It is also suitable for heating elements with low conductor temperatures up to 300°C in non-oxidizing atmosphere.

Due to its low melting point, CENTANIN® is also proved successfully for years in thermal spraying applications, e.g. heating layers and heated surfaces.

Form of Delivery

CENTANIN® is supplied in the form of round wires in the range of 1 to 6 mm \emptyset in bare annealed condition. Also available on request other Diameters, sheets, ribbons, flat wires, stranded wires and rods.

Notes on Treatment

This alloy is in hard drawn condition subject to stress-corrosion-cracking and should be annealed immediately after being processed.

Electrical Resistance in Annealed Condition

	±20	1.00	+10	1.00	-	-	-
10-6/	10 ⁻⁶ /K	Nom. value	Perm. value [%]			Reference values	
	+20 °C and +60 °C	+20)°C	+100°C	+300°C	+400°C	+500°C
	Temperature coefficient of electrical resistance between	Electrical resistivity Reference Values	in Ωxmm²/m at				

Physical Characteristics (Reference Values)

Density at +20°C	Melting point	Specific heat at +20°C	Thermal conduc- tivity at +20°C			Thermal EMF against copper at	
				+100°C	+400°C	+20°C	
g/cm³	°C	J/g K	W/m K	10 ⁻⁶ /K	10 ⁻⁶ /K	μV/K	
7.8	+900	0.42	-	20	-	≤+3	

Strength Properties at +20°C in Annealed Condition

Tensile Strength	Elongation (L ₀ = 100 mm) % at nominal diameter in mm
N/mm²	
[Min.]	Over 1 min.
540	25

Precision resistance alloys:

	ZERANIN®30	MANGANIN®	ISOTAN®	ISABELLIN® A	NOVENTIN®	CENTANIN®	ISA0HM®
resistivity [$\mu\Omega^*$ cm]	29	43	49	50	90	100	132
low TCR	•	•	•	lacktriangle	•	•	•
low thermal EMF	•	•	0	0	•	0	0
solderability / workability	•	•	•	•	•	•	0

very good good less good

