Brand Name	NICKEL 99.2							
Material Code	2.4066							
Abbreviation	Ni 99.2							
Chemical Composition (mass components) in %.								
Ni ≥ 99.2								

NICKEL 99.2 is supplied in the form of round wires in the range

0.05 to 5.00 mm \emptyset in bare or enamelled condition.

Features and Application Notes

NICKEL 99.2 is especially characterized by very high resistance to oxidation and chemical corrosion, relatively low resistivity and a very high temperature coefficient. The material is used in many different applications, for example for the manufacture of connections for heating elements. NICKEL 99.2 is magnetic up to approx. +360 °C. The maximum working temperature in air is +700 °C.

Electrical Resistance in Annealed Condition

Temperature coefficient of electrical Electrical resistivity in: $\mu\Omega \times cm$ (first line) and Ω/CMF (second line) resistance between **Reference Values** 0 °C and +100 °C +20 °C +100 °C +200 °C +300 °C +400 °C +500 °C tolerance ± 10 % 10⁻⁶/K 9 +4,700 to +5,800 13 19 26 33 38 78 114 156 54 199 229

Form of Delivery

Physical Characteristics (Reference Values)

Density at +	-20 °C	Melting point	Specific heat at +20 °C	Thermal conducti- vity ¹⁾ at +20 °C	Average linear thermal expansion coefficient between +20 °C and		Thermal EMF against copper at
					+100 °C	+400 °C	+20 °C
g/cm³	lb/cub in	°C	J/g K	W/m K	10 ⁻⁶ /K	10⁻⁰/K	μV/K
8.90	0.32	+1,440	0.47	69.00	13.00	14.00	-23.00

Mechanical Properties at +20 °C in Annealed Condition

Tensile Strength ²⁾		Elongation (L_0 = 100 mm) % at nominal diameter in mm							
MPa	psi	0.020 to 0.063	> 0.063 to 0.125	> 0.125 to 0.50	> 0.50 to 1.00	> 1.00			
450	65,250	≈ 10	≈ 15	≈ 18	≥ 20	≥ 25			

General Note // NICKEL 99.2 is not a standard resistance alloy. Therefore no resistance values are quoted. The weight values correspond to those of ISOTAN[®] wires of the same diameter. **Notes on Treatment** // NICKEL 99.2 can be worked easily. This alloy can be soldered and brazed without difficulty. All known welding methods can be used.