Brand Name	NOVEN	TIN ^{® 1)}			
Material Code					
Abbreviation CuMnNi 25-10					
Chemical Composition (mass components) in %. Average values of alloy components					
Cu Rest	Mn 25	Ni 10			

Features and Application Notes

The newly developed alloy NOVENTIN® is in the best tradition of Isabellenhütte's precision resistance alloys ZERANIN® 30, MANGANIN® and ISAOHM®. With its high specific electrical resistance, NOVENTIN® closes the gap between MANGANIN® and ISAOHM®.

Like MANGANIN[®], an alloy which has been used in many different fields for a long time, NOVENTIN[®] stands out particularly due to a small temperature coefficient of the electrical resistance between +20 and +50 °C with a parabolic behaviour of the R(T) curve, a high long-term stability of the electrical resistance, an extremely low thermoelectric power against copper and a good workability.

Due to these features, NOVENTIN[®] is excellently suitable for the production of precision and standard resistors. The maximum application temperature under atmosphere is +170 °C.

Form of Delivery

NOVENTIN[®] is supplied in the form of round wires in the range 0.03 to 5.00 mm \emptyset in bare or enamelled condition. The product line includes sheets, ribbons, flat wires, stranded wires and rods.

Electrical Resistance in Annealed Condition

Temperature coefficient of the electrical resistance at	Electrical resistivity in: $\mu\Omega$ x cm (first line) and Ω /CMF (second line) Reference Values					
+20 °C and +50 °C 10 ⁻⁶ /K	+20 °C tolerance ±5 %	+100 °C	+200 °C	+300 °C	+400 °C	+500 °C
±10	90	90				
	540	540				

Physical Characteristics (Reference Values)

Density at +:	20 °C	Melting point	Specific heat at +20 °C	Thermal conducti- vity at +20 °C	Average linear thermal expansion coefficient between +20 °C and	Thermal EMF against copper at
					+100 °C	+20 °C
g/cm³	lb/cub in	°C	J/g K	W/m K	10 ⁻⁶ /K	μV/K
8.1	0.291	+940	0.47	12.5	18.5	± 0.5

Strength Properties at +20 °C in Annealed Condition

550	80,000	≈ 12	≈ 18	≈ 20	≥ 20
MPa	psi	0.03 to 0.063	> 0.063 to 0.125	> 0.125 to 0.50	> 0.50 to 1.00
Tensile Sti	rength ²⁾	Elongation ($L_0 = 100 \text{ mm}$) % at nominal diameter in mm			

2) This value applies to wires of 1.0 mm diameter. For thinner wires the minimum values will substantially increase, depending on the dimensions.

Processing note // NOVENTIN[®] is well processable. The alloy can be soldered, however, it develops a thin oxide layer under atmosphere which has to be removed before processing. With an adequate soldering flux, NOVENTIN[®] is also suitable for dip soldering. Resistors made of NOVENTIN[®] have to be aged in order to reduce mechanical tensions.

Special Remarks on the Temperature Coefficient (TCR) //

The graph 1 shows the variation of the electrical resistance vs. temperature for different temperature ranges. Because of the parabolic shape of the R(T)-curves in the room temperature range (graph 1) the TCR data must be specified with the corresponding temperature range used. A better and for NOVENTIN® typical characterization of the R(T)-curve is therefore the second zero transition, which is the temperature where the resistance is equal to the +20 °C value. The dotted straight lines a and b apply to a TCR = ± 10 ppm/K.

